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Introduction

Viruses are obligatory parasites of cells. Thus it is expected that host cell factors contribute
importantly to the life-cycle of viruses. In this section, we survey, for HIV-1, four types of virus-
cell interactions. These four areas include: 1) DNA-binding proteins that recognize target motifs in
proviral LTR; 2) RNA-binding proteins that bind HIV-1 RNAs; 3) cellular factors that form protein-
protein complexes with HIV-1 regulatory proteins; and 4) cellular genes which are modulated upon
viral infection. With rapid increases in knowledge in the area of virus-cell interactions, we anticipate
that this initial survey would be expanded extensively in future editions of the data base. Additional
discussions on HIV-cell interactions are found elsewhere (Jones and Peterlin, 1994; Jeang and Gatignol,
1994; Garcia and Gaynor, 1994; Gatignolet al., 1996; Dayton, 1996).

I. DNA-binding Proteins

The promoter-enhancers of the human immunodeficiency virus (HIV) are contained in the U3 of
the viral long terminal repeat (LTR). HIV-1 U3 is typically 454 nucleotides long and has binding sites
for many transcription factors. Some of these are diagrammed in figure 1. With the exception of NF-kB
and Sp1 (Rosset al., 1991; Kimet al., 1993; Huang and Jeang, 1993; Huanget al., 1994), verification
of the importance of the various sequences in viral contexts has not been directly performed.
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Fig. 1. Diagrammatic representation of the positions in U3 and R for some of the DNA-binding proteins
that recognize the HIV-1 LTR.

Subgenomic assays in cultured cells indicate that the primary contributors to HIV-promoter ac-
tivity are the NF-kB, Sp1, and TATAA (sequences from +1 to –105; Berkhout and Jeang, 1992).
Nonetheless, it is likely that other DNA-binding factors also contributein vivo. Beginning directionally
from the 5′ end of U3, binding sites for AP-1 (a fos/jun hetero-complex; van Straatenet al., 1983;
Hattori et al., 1988) and COUP (a member of the steroid/thyroid receptor superfamily; Cooneyet al.,
1991) are found between –324 to –357. Both COUP and AP-1 are expressed in human T-cells, and thus
could compete with each other for the same proviral DNA sites during HIV-1 infection.

More proximally, between –216 and –254 are binding motifs for nuclear factor from activated
T-cells (NFAT; Shawet al., 1988). NFAT is an intermediating transducer of signals initiated at the T-cell
antigen receptor. Recent evidence suggests that NFAT binding activity is composed of three discrete
polypeptides, NFATp (McCaffreyet al., 1993), Fos and Jun (Yaseenet al., 1993).
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In the region between –159 to –174 is a binding consensus sequence for USF (Gregoret al., 1990).
USF was characterized initially as a positive activator of adenovirus major-late-promoter transcription.
In the HIV context, there is conflicting information on whether this factor has moderating (and thus be
regarded as a negative regulatory factor; NRF; Luet al., 1990) or stimulating (Maekewaet al., 1991)
effects. Interestingly, USF also binds a second unrelated sequence (–5 to +11) that surrounds the HIV-1
initiator (Hu et al., 1993). USF interaction at the initiator-proximal site activates strong expression
from the TATAA-promoter (Huet al., 1993). Of note, a factor distinct from USF, but which binds the
same DNA-sequence, has also been cloned and characterized (TFE3; Bechmann and Kadesch, 1991).

LEF-1 is a T-cell specific transcription factor (Waterman and Jones, 1990). Once bound to its
cognate site, LEF-1 bends DNA and thereby facilitates the assembly of nucleoprotein complexes at the
promoter (Gieseet al., 1992; reviewed in Jones and Peterlin, 1994). A high affinitiy LEF-1 binding site
is present at –122 to –143. Two low affinity binding sites exist at –37 to –51 and +17 to +32 (Waterman
and Jones, 1990).

NF-kB (Nabel and Baltimore, 1987) and Sp1 (Jones and Tjian, 1985; Joneset al., 1986) motifs are
perhaps the best characterized sequence elements in the HIV-1 LTR. These sequences directly impact
viral replication (Ross et al, 1991; Kimet al., 1993; Huang and Jeang, 1993; Huanget al., 1994), viral
transcription (Harrichet al., 1990; Berkhout and Jeang, 1992; Pazinet al., 1996), and Tat transactivation
(reviewed in Jones and Peterlin, 1994; Jeang and Gatignol, 1994). For more extensive discussions of
the biochemical and functional properties of NF-kB (Ghoshet al., 1990; Kieranet al., 1990; Nolanet
al., 1991; Liouet al., 1991; and references cited therein) and Sp1 (Dynan and Tjian, 1983; Briggset
al., 1986; Kadonagaet al., 1987; and references cited therein), readers should consult elsewhere.

PRDII-BF1 is a 300 kDa zinc-finger containing protein (Baldwinet al., 1990; Seeleret al., 1994).
PRDII-BF1 recognizes and binds the NF-kB motif; however, it also binds a divergent sequence in R
(+27 to +52; Seeleret al., 1994).

Positioned at the junction of U3 and R are sites for LBP (Yoonet al., 1994) and YY1 (Useheva and
Shenk, 1994; Setoet al., 1991). While the role for LBP in HIV-1 transcription is not wholly understood
(Joneset al., 1988; Katoet al., 1991), binding of YY1 to the LTR has been shown to repress HIV-1
expression and production of virions (Margoliset al., 1994). Besides LBP and YY1, a DNA-mediated
activity for the induction of short transcripts (IST) has also been mapped to the same general vicinity
(–5 to +26; Sheldonet al., 1993). The cDNA for the cellular factor that mediates IST-activity has not
been isolated, and thus the authentic identity of this factor is unknown. HIP 116 is another newly cloned
cDNA that binds to the TATA/initiator of the HIV-1 promoter (Sheridanet al., 1995).

There are a number of reports of sites for DNA-binding proteins in the HIV-1 genome that occur
downstream of the +1 start for transcription. These include NF-kB motifs (Mallardoet al., 1996) and
sites for AP-1, AP-3-like, DBF-1, and Sp-1 (El Kharroubi and Martin, 1996). The full implication of
these downstream DNA-motifs in the setting of HIV-1 infection remains to be clarified.

II. RNA-binding Proteins

In recent years, it has become evident that RNA-binding proteins play important roles in gene
regulation (see reviews, Keene and Query, 1991; Mattaj, 1993; Burd and Dreyfuss, 1994). For HIV-1,
cellular proteins that bind viral regulatory RNAs have been studied in detail. In particular, at least
eight host cell factors have been described to bind TAR RNA. Similarly, two RRE-binding factors have
been characterized. There are also biologically compelling reasons as to why TAR- and RRE- binding
proteins are meaningful contributors to the HIV-1 lifecycle.

The HIV-1 leader RNA, TAR, forms a stem-bulge-loop structure of approximately 60+ nucleotides
(Muesinget al., 1987; Berkhout and Jeang, 1989). Early, it was reported that many human cellular
proteins bound TAR RNA (Gatignolet al., 1989; Gaynoret al., 1989). Since then, some of these factors
have been defined further. Tabulating from extant studies, eight proteins associate with either the bulge,
loop, or stem of TAR RNA (see fig. 2). TAR loop-binding proteins include p68 (Marciniaket al., 1990),
and TRP1/TRP185 (185 kDa; Shelineet al., 1991; Wuet al., 1991), while TRP2 (70–110 kDa; Sheline
et al., 1991) binds to TAR-bulge. Proteins that complex with the double-stranded stem of TAR RNA
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consist of P1/dsI (newly renamed as PKR; McCormack et al., 1992; Royet al., 1991), SBP (140 kDa;
Rounseville and Kumar, 1992), and TRBP (Gatignolet al., 1991; Gatignolet al., 1993). Two human
autoantigens have been identified as TAR RNA-binding factors: Lupus antigen Ku (Kaczmarski and
Khan, 1993) binds to the loop of TAR, while La (Changet al., 1994; Svitkinet al., 1994) recognizes
U-residues within the overall context of the TAR secondary structure.
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Fig. 2. Structure of the HIV-1 TAR RNA. Identities of the proteins that bind to the loop, bulge or stem
of the TAR hairpin are indicated.

Recently, additional TAR-RNA-binding proteins and co-factors have been reported. Wong-Staal
and colleagues have described the binding of TARBP-b (Reddyet al., 1995) to the bulge structure of
TAR. A set of cellular co-factors that enhances the binding of TRP 185 and RNA polymerase II (RNAP
II) to TAR have been described by Gaynor and colleagues (Wu-Baeret al., 1996a; 1996b). Finally, Hart
and co-workers have characterized the elusive human chromosome 12-associated TAR loop-binding
factor as an 83-kilodalton primate cell-specific protein whose expression is constitutively absent in
hamster cells (Hartet al., 1995).

RRE-binding proteins have also been studied extensively. We know that TRBP also can bind
RRE (Parket al., 1994). A 56 kDa factor (Vaishnavet al., 1992) and a 49 kDa protein that belongs to
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the heterogeneous nuclear ribonuclear protein family (Xuet al., 1996) have been reported to bind RRE.
Two other factors of 120 kDa and 60 kDa in molecular size have been reported to be primate-specific
RRE-binding factors that are not expressed in rodent cells (Shuklaet al., 1994). It is expected that other
RRE-factors would emerge from future studies. How these, as yet poorly characterized, factors might
contribute to Rev/RRE function is reviewed in detail elsewhere (Dayton, 1996).

III. Protein-protein interactions

Protein-protein interactions are well-documented to be important in gene regulation (see reviews,
Lewin, 1990; Greenblatt, 1991). Recent studies suggest that many HIV-1 proteins complex with host
cell factors. We briefly describe below some examples pertaining to Tat, Rev, Gag, and Nef.

Although Tat is best known for transcription, it has other functions (Huanget al., 1994; reviewed
in Changet al., 1995; Goldstein, 1996) and has been reported to be a secretable factor that promotes the
growth of Kaposi-like cells (Ensoliet al., 1990). There is evidence that Tat can be taken up actively into
cells (Frankel and Pabo, 1988) through binding to a cell-surface protein (Weekset al., 1993) implicated
to beαvβ5 integrin (Vogelet al., 1993). Once inside cells, Tat interacts with multiple partners in
activating transcription (see also Tat Structure and Function section; Part III).

Two factors that bind Tat are themselves critical components of the eucaryotic RNA polymerase
II transcription machinery. Genetic evidence supports a critical role for Sp1 in HIV-1 Tat-mediated
transactivation (Harrichet al., 1989; Kamineet al., 1991; Southgate and Green, 1991; Berkhout and
Jeang, 1992). Interestingly, direct protein-protein interactions between Tat and Sp1 (Jeanget al., 1993)
and Tat and the thyroid hormone receptor (which in certain cells bind at the Sp1 sites in the HIV-1
LTR; Desai-Yajniket al., 1995) have been documented. In addition, there is evidence that Tat also
contacts TBP (Kashanchiet al., 1994) and that Tat-Sp1-TFIID could present as a multiprotein complex
(Huanget al., 1993) inside cells. The critical nature of Tat-TBP contact has been questioned recently
(Wanget al., 1996). These investigators found that a trans-activation defective Tat protein bound TBP
with the same avidity as wild type Tat protein, suggesting that binding to TBP cannot solely reflect the
trans-activation property of Tat.

A large family of proteins related to the 26S protease from human erythrocytes (Dubielet al.,
1994) are Tat-binding polypeptides. Members of this family include TBP-1 (Nelbocket al., 1990;
Ohanaet al., 1993), TBP-7 (Ohanaet al., 1993; Shaw and Ennis, 1993), MSS1 (Shibuyaet al., 1992),
and SUG1 (Swaffieldet al., 1992). The exact role of this family of proteins in cellular metabolism
is not wholly clear; however, the 26S protease seems to regulate the degradation of some cyclins and
in this manner has been implicated in modulating the stability of oncoproteins such as c-Mos, c-Myb,
c-Myc and p53 (Dubielet al., 1994).

Other cellular proteins, a 36 kDa protein (Desaiet al., 1991), a 60 kDa protein (Kamineet al.,
1996), and different cellular protein kinases (Hermann and Rice, 1993; McMillanet al., 1995; Zhou
and Sharp, 1996; Chun and Jeang, 1996), have been reported to bind Tat. Mavankal and colleagues
have suggested that RNA polymerase II (RNAP II) is itself a specific Tat-binding protein (Mavankalet
al., 1996). The findings that RNAP II and kinases that phosphorylate RNAP II are Tat-binding factors
suggest that these components contribute a part to explaining Tat function in transcription.

Multiple cellular factors also interact with Rev. Rev localizes to the nucleoli, and work by
Laemmli and colleagues (Fankhauseret al., 1991) and others (Miyazakiet al. 1995; Szebeniet al.,
1995) have demonstrated a tight association between the basic nuclear-localizing domain of Rev and
nucleolar B23 protein. This protein-protein complex likely directs the subcellular localization of Rev.

By contrast, many investigators have studied the nuclear export function of Rev (Fischeret al.,
1994; 1995; Wenet al., 1995; Myeret al., 1996; Fridellet al., 1996). Using the yeast two-hybrid
cloning approach, three groups have isolated closely related nucleoporin proteins that bind wild type
but not mutant Rev (Fritzet al., 1995; Bogerd et al., 1995; Stutzet al., 1995). These results suggest
that the nucleoporin class of proteins are the Rev activation-domain specific co-factors involved in the
nuclear to cytoplasmic export of RNAs.
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Rev function can also be modulated by associations with other cellular factors. Two additional
proteins have been shown to bind Rev. These are translation factor eIF-5A (Ruhlet al., 1993; Bevec
et al., 1996), and serine-arginine (SR)-rich factors (Gontarek and Derse, 1996) such as the p32 protein
(Luo et al., 1994; Tangeet al., 1996) originally characterized by Krainer and colleagues (Kraineret
al., 1991) as a splicing factor-SF2-associated polypeptide. SR-rich proteins can also bind to the basic
domain of the HIV-1 and HIV-2 Tat proteins (Trinh and Jeang, unpublished observation; B.R. Cullen,
personal communication).

Other less-characterized Rev-binding proteins include human prothymosin alpha (Kubota et al,
1995) and nuclear lamin B (Nikolakaki et al, 1996).

Both HIV Gag and Nef also have cellular partners. p55 and p24 Gag bind cyclophilin A and
cyclophilin B proteins (Lubanet al., 1993). The cyclophilins are cellular polypeptides originally
characterized for their specific binding to cyclosporin A.

Nef has been found to bindβ-COP, a coat protein from non-clathrin-coated vesicles (Benichouet
al., 1994). This interaction may be important in promoting the intracellular sequestration of CD4. Nef
has also been shown to interact directly with CD4 (Rossiet al., 1996). Recently many kinases have
been described to associate with Nef (Sawaiet al., 1994; Sakselaet al., 1995; Bodeuset al., 1995; Luo
and Garcia, 1996). The identity of some of these kinases include Lck (Salghettiet al., 1995; Collette
et al., 1996), Hck (Leeet al., 1995), and PAK (Nunn and Marsh, 1996). Undoubtedly, there is much
more to be learned from this area of research.

IV. Cellular Genes Modulated by HIV

Infection of cells by HIV results in activation and repression of many cellular genes. Because
of the complexity of ambient gene expression inside cells, it is logistically difficult to dissect those
genes that are upregulated from those that are downregulated from others that remain unperturbed.
Nevertheless, several examples of genes that respond to HIV infection are known. Some of these
include IL-2 (Westendorfet al., 1994), IL6 (Scalaet al., 1994), and TGF-β (Buonaguroet al., 1994;
Rastyet al., 1996).

Recent investigations have shown that HIV-1 proteins such as Tat and Nef potently affect cellular
metabolism. Tat, for example, has been shown to modulate the expression of cytokines including
MIP-1 alpha (Sharmaet al., 1996), second messengers including nitric oxide (Bartonet al., 1996),
and housekeeping genes such as Bcl2 (Zauliet al., 1995a). Both Tat and Nef participate in signal
transduction pathways that include NF-kB (Demarchiet al., 1996), phosphatidylinositol kinase (Zauli
et al; 1995b; Gramagli et al., 1996), and protein kinase C (Conantet al., 1996)

The identification of genes modulated by HIV has been based on classical approaches; however,
with the advent of mRNA differential display technology (Liang and Pardee, 1992) the exhaustive
characterization of cellular genes that respond to infection by HIV should be accomplished with greater
ease. One such example has recently been reported. Zeichner and colleagues, using a differential display
approach, found that expression of the human glucose transporter protein (GLUT3) is upregulated by
HIV-1 infection. We anticipate reports on others, shortly.
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